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Abstract

The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed
using a quadratic optimization algorithm. Optimized loading in configuration space dra-
matically reduces the short wavelength modes in the electrostatic potential that are partly
responsible for the nonconservation of total energy; further, the long wavelength modes
are resolved with good accuracy. As a result, the conservation of energy for the optimized
loading is much better that the conservation of energy for the random loading. The method
is valid for any geometry and can be coupled to optimization algorithms in velocity space.
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1 Introduction

The problem of microinstabilities in turbulent tokamak and stellarator plasmas has received
considerable attention over the last few decades. This is mainly due to the general consensus [1,2]
that such short-scale, low-frequency instabilities are responsible for the so-called anomalous
transport [3] that occurs across the stream lines of the confining magnetic field.

An attractive approach for the simulations of microinstabilities in complex toroidal geome-
tries is the particle-in-cell (PIC) gyrokinetic model. In view of the inherent discreteness (through
the macroparticles or markers [4]) of the PIC gyrokinetic model, the issue of energy conservation
for long-time simulations is of crucial importance. There are various causes for the nonconser-
vation of total energy in PIC gyrokinetic simulations; here are some examples: (a) the marker
trajectories are integrated in time using a finite time step; (b) the computational grid in con-
figuration space has a finite grid spacing; (c) the velocity space is not covered uniformly. In
this paper, we study the problem of marker loading in configuration space. The basic idea is
that an optimized loading will reduce the short-wavelength modes in the ion number density
while accurately resolving the long-wavelength modes; as a result, the electrostatic potential
and the local electric field that acts on the guiding centers will have fewer small-scale modes
detrimental to the global energy conservation. The paper is organized as follows; in section 2,
the case of one-dimensional loading based on a quadratic optimization algorithm is presented;
the generalization to a two-dimensional domain is given in section 3; concluding remarks are
given in section 4.

2 One-dimensional Optimized Loading

Before attempting to consider the general case of optimized loading in general geometry, we
present a simple one-dimensional model to illustrate the basic idea. The optimization algorithm
used in this paper is based on quadratic optimization. Numerical experiments presented in this
paper show that such optimization algorithm is sufficient as far as loading in configuration space
is concerned; algorithms for optimized loading in velocity space sometimes do required more
sophisticated techniques such as the neural network based techniques [5]. Consider a positive-
definite energy-like quantity, E, which depends on N variables

E = F (θ1, θ2, · · · , θN) ≡ F (θ) , (1)

where F is a nonsingular, bounded function of the variables θi. Introducing a time-like variable
t, the updating rules given by

dθi

dt
= −∂F

∂θi
(i = 1, 2, · · · , N) , (2)

minimize E; this is easily proved by using the chain rule on Eq.(1) and Eq.(2)

dE

dt
=

N∑
i=1

∂F

∂θi

dθi

dt
= −

N∑
i=1

(
∂F

∂θi

)2

≤ 0 . (3)

In other words, the updating rules (2) are consistent with dE/dt = 0 as t 7→ ∞. In practise, the
numerical integration of Eqs.(2) is carried out numerically since the energy-like quantity E is
usually a complex (nonlinear) function of the variables θ. For a given physical situation, one can
conceive an infinite number of energy-like quantities E with appropriate constraints (boundness



and smoothness) on F . The problem is, of course, to select the proper quantity E.

In order to illustrate the applicability of the quadratic minimization for the case of spatial
loading in PIC gyrokinetic simulations, we consider a simple one-dimensional model. The sim-
plicity of the model is also used as a guide to determine the explicit form of the energy-like
quantity E. In the long wavelength limit, the gyrokinetic Poisson equation is [6] (in gyrokinetic
units: ρs∇⊥ 7→ ∇⊥, eΦ/Te 7→ Φ, ρs = cs/ωci, ωci = eB/(mic), cs =

√
Te/mi)

∇2
⊥Φ = ne − ni , (4)

where ne is the electron number density (in the limit k⊥ρe 7→ 0, where k⊥ is the characteristic
perpendicular wavevector for ITG turbulence) and ni is the ion guiding center number density
which explicit form involves an integration over configuration space and velocity space

ni =

∫
F (R, v||, v⊥)δ (R − r + ρ) dRdv . (5)

Here the position vector, r, is related to the guiding center position vector, R, through the
relation r = R+ρ where ρ = v⊥/ωci (e1 cos ϕ + e2 sin ϕ); e1 and e2 are two orthonormal vectors
that are perpendicular to the magnetic field direction at the guiding center position R and ϕ is the
gyrophase angle. The distribution function of the ion guiding centers is denoted F in the above
equation. Note that the real difficulty is the spatial loading of the ion guiding center positions;
for the electrons, a random spatial loading is sufficient since, to a good approximation, k⊥ρe ≈ 0
(in other words, R ≈ r for the electrons). For a one-dimensional periodic system (with period
L), and noting that ni 7→ ni (gyroaveraging is meaningful in two-dimensional configuration space
or three-dimensional configuration space), Eq.(4) becomes

d2Φ

dx2
= ne − ni ≡ S . (6)

Since the system is assumed to be periodic, one can Fourier decompose Eq.(6); as a result each
Fourier mode associated with the electrostatic potential is given by

Φk = −Sk

k2
.

Clearly the long-wavelength modes in Sk are ‘amplified’ in the electrostatic potential through the
factor k−2 � 1. Therefore, it would be advantageous to resolve these modes accurately. At the
other end of the k spectrum, the short-wavelength modes of the electrostatic potential generate
strong ‘random kicks’ in the marker positions through the (dominant) E×B drift velocity; such
short-wavelength modes can be partially suppressed by using, for example, a digital filter. The
‘noise’ is actually generated at all scale lengths and fed back into the simulation; as a result, the
total energy of the gyrokinetic system is not conserved. Therefore, it should be advantageous to
load the position of each ion guiding center such as to minimize the long wavelength modes in
ni. Note that a simple random loading of the ion guiding centers is not optimal because of the
convolution between configuration space and velocity space [see Eq.(5)].

Returning to our one-dimensional problem, the weight (which is related to the perturbed ion
distribution function; see, for example, Ref. [4]) for marker k is denoted Wk and its position
is xk. A uniform grid in configuration space is setup where the node positions are given by
Xg = g∆x, where g = 0, 1, · · · , Ng, ∆x = L/Ng is the grid spacing and Ng is the number of grid
points. In view of the periodicity of the system, we have, for any physical quantity F (x), the



relation of F (x +L) = F (x); for the discrete system, we have FNg = F0, FNg+1 = F1, etc. where
the notation Fg = F (Xg) has been used. In order to be specific, we assume that the marker
weights are loaded randomly according to

Wk =

(
rk − 1

2

)
W0 , (7)

where W0 � 1 is a small parameter and rk is a random number uniformly distributed in the
interval [0, 1]. We would like to point out that the algorithm described in this paper does not
rely on Eq.(7) and it is valid for an arbitrary sequence W = {W1, W2, · · · , WN}, where N is the
total number of markers used in the simulation. If ρg denotes the number density at grid point
g, we define an energy-like quantity of the form

E(x) ≡ E(x1, x2, · · · , xN) ≡
Ng∑
g=1

ρ2
g , (8)

where, for each marker k, xk = xk(t). In order to determine the number density at each node,
we use the linear interpolation scheme to deposit the contribution of each marker onto the grid
(Figure 1). We denote D(xk, Wk) as the (linear) deposition scheme for marker k with position
xk and weight Wk. The algorithmic form of D(xk, Wk) is

• find the grid index g such that g∆x ≤ xk < (g + 1)∆x;

• compute ξk = (xk − g∆x) /∆x = xk/∆x − g;

• update the (local) number density according to

ρg ⇐= ρg + (1 − ξk)Wk ,

ρg+1 ⇐= ρg+1 + ξkWk .

Here the left arrow denotes replacement. The updating rules for the marker position xk can be
determined using Eq.(8)

dxk

dt
= − ∂E

∂xk

= −2

Ng∑
g=1

ρg
∂ρg

∂xk

= −2

Ng∑
g=1

N∑
k′=1

ρg
∂ρg

∂xk′

∂xk′

∂xk

=
2

∆x
(ρj − ρj+1)Wk , (9)

where the marker k is assumed to belong to the cell j, that is j∆x ≤ xk < (j+1)∆x; the relation
∂xk′/∂xk = δkk′ , where δkk′ is the Kronecker delta symbol, has also been used. Note that the
dynamical equations (9) are coupled through the discrete number density. Eqs.(9) are integrated
in time using standard fourth-order Runge-Kutta scheme [7]. The time step ∆t of integration
is chosen such that the average displacement of the markers does not exceed the grid spacing.
The energy-like quantity E, defined in Eq.(8), is monitored as the simulation progresses. The



parameters used in Figures 2,3 and 4 are: Ng = 64, ∆t = 0.1 and Nc = N/Ng = 50 is the
number of markers per cell.

Figure 2 shows the initial (plain line) number density based on a random initialization of the
marker positions:

xk(0) = rkL (k = 1, 2, · · · , N)

where, as before, rk is a random number in the unit interval [0, 1]. The dotted line shows the
corresponding number density at t = 200. Some residual short wavelength modes can be seen.
Figure 3 shows the number density at t = 500; we note the appearance of a long wavelength
(k ∼ 1/L) mode. The minima of the energy-like quantity E is reached at saturation time t = ts

such that

dE

dt
= 0 for t ≥ ts .

The saturated number density profile is shown in Figure 4. The long wavelength mode, that was
already visible in Figure 3, now dominates. Upon inspection of Figure 4 one can infer that the
Fourier spectrum of the electrostatic potential is also dominated by a few long wavelength modes
which are detrimental to the overall energy conservation. In comparison, the Fourier spectrum
for the case of random loading (plain line) contained both short-wavelength and long-wavelength
modes; the long-wavelength modes have relatively large amplitudes.

Figures 5 and 6 show the energy-like quantity as a function of time for the cases of Nc = 10
markers per cell and Nc = 50 markers per cell, respectively. Other parameters and the initial
conditions are the same in Figures 2-4. In both cases, a steep initial decrease in E can be seen.
This is followed by a slower rate dE/dt; discrete events occur when a small group marker (or a
single marker) cross over to a neighboring cell. Comparing Figure 5 with Figure 6 we note that
the ratio E(ts)/E(0) is smaller for the case with Nc = 50 markers per cell compared to the case
with Nc = 10. This is due to the fact that the random loading becomes a better approximation
of the optimal loading as the number of markers N is increased. In the limit N 7→ ∞ the initial
random loading is, of course, optimal.

3 Two-dimensional Optimization Algorithm

In this section, we describe a two-dimensional version of the algorithm presented in the previous
section. The generalization of the present algorithm to toroidal geometry only requires the
computation of new coefficients for the gyroaveraging processes (to account for the tilt in the
magnetic field direction and the nonuniformity of the Jacobian).

The main difference with the case described in the previous section is that the number
density of the ion guiding center, Eq.(5), now couples the configuration space to the velocity
space. Furthermore, the gyroaveraging process (Figure 7) implies that the updating rules are
nonlocal.

As it is customary in PIC simulations, one uses the magnetic moment per unit of mass,
µ ≡ V 2

⊥/(2B), instead of the perpendicular velocity as a dynamic variable. A Maxwellian
probability distribution function is used for the loading in V⊥

FM(V⊥) = n0
V⊥
V 2

thi

exp

(
− V 2

⊥
2Vthi

2

)
dV⊥ , (10)

where Vthi =
√

Ti/mi is the ion thermal velocity and n0 is the equilibrium background density.
The marker weights are loaded randomly, as in Eq.(7), although an arbitrary loading can be used.



For simplicity, we consider a two-dimensional domain Ω = {x ∈ [0, Lx], y ∈ [0, Ly]} periodic in
the x and y directions. In order to mimic the nonuniformity of the magnetic field in toroidal
geometry, the confining B field is taken as

B = B0x/Lsŷ + B0 [1 − εx cos (2πy)] ẑ , (11)

where Ls is the shear length, (x, y) = (x/Lx, y/Ly), ẑ is a unit vector in the z direction and ε < 1
is a free parameter. The magnetic field given by Eq.(11) is obviously divergence free. A uniform
computational grid with grid spacings ∆x = Lx/Nx and ∆y = Ly/Ny is set up. In analogy with
the one-dimensional case, the energy-like quantity E is defined as

E = C
Nx∑
i=1

Ny∑
j=1

n2
i,j(t) , (12)

where C = 1/
Nx∑
i=1

Ny∑
j=1

n2
i,j(t = 0) is a constant of normalization. If (xk, yk) denotes the position of

the guiding center of the kth marker, the locations of a set of Ng gyropoints is defined through

xkg = xk + ρk cos ϕg ,

ykg = yk + ρk sinϕg , (13)

for g = 1, 2, · · · , Ng. In normalized gyrokinetic units, the magnitude of the gyroradius de-
pends on the position in configuration space and velocity space since ρk = V⊥k/B(xk, yk) =√

µk

√
2/B(xk, yk). In Eq.(13), the discrete gyroangles are given by ϕg = g∆ϕ and ∆ϕ = 2π/Ng .

The computation of the number density of ion guiding marker density is depicted in Figure 7
for the case Ng = 8. The black square denotes the position of the guiding center whereas each
small black triangle identifies a point on the ring with radius ρ, or simply a gyropoint. The
small black circles denote the nodes of the computational grid; the cell (i, j) denotes the area
delimited by a set of four neighboring nodes: (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1). The
guiding center density at node (i, j), which is denoted ni,j, usually involves the guiding centers
of markers which belong to different cells. In order words, a change in the marker position
(xk, yk) 7→ (xk + δxk, yk + δyk) will affect the number density at different nodes (i, j). The
two-dimensional version of the linear interpolation scheme is used (See Figure 8). If the position
of the gyropoint (xkg, ykg) satisfies the relations of

i∆x ≤ xkg < (i + 1)∆x ,

j∆y ≤ ykg < (j + 1)∆y ,

then its contribution to the local number density is

ni,j ⇐= ni,j + σ00
Wk

Ng
,

ni+1,j ⇐= ni+1,j + σ10
Wk

Ng

,

ni,j+1 ⇐= ni,j+1 + σ01
Wk

Ng
,

ni+1,j+1 ⇐= ni+1,j+1 + σ11
Wk

Ng



where σ11 = αβ, σ10 = α(1 − β), σ01 = β(1 − α), σ00 = (1 − α)(1 − β), α = xkg/∆x − i and
β = ykg/∆y − j. In analogy with the one-dimensional case, the updating rules for the guiding
center position are

dxk

dt
= − ∂E

∂xk
,

dyk

dt
= − ∂E

∂yk
, (14)

where E is given by Eq.(12). At t = 0 the markers are loaded randomly in the domain Ω. Figure
9 shows the time evolution of the energy-like quantity as a function of time. The simulation
parameters are Nc = N/Ng = 10, Nx = Ny = 64, Lx = Ly = 8, ∆t = 1.0 and Ng = 4. Figure
9 shows that E(t) follows a pattern similar to those of Figures 5 and 6. However, the discrete
events that occur in Figures 5 and 6 are absent in Figure 9. This smooth behavior is due to the
gyroaveraging process which makes the updating rules (14) nonlocal. For example, the guiding
center shown in Figure 7 influences the local number density at no less than 16 nodes.

Figure 10 shows the initial density of ion guiding centers. For this specific case, the updating
rules (14) involve a set of 2NxNyNc = 81920 coupled equations. The local density of ion
guiding centers at t = 100 is shown in Figure 11. As in the one-dimensional case, the short-
wavelength modes are gradually removed from the simulation domain although a few modes
with k⊥∆x ∼ k⊥∆y = O(1) do remain; these long-wavelength modes have small amplitudes.
Figure 12 shows the final (saturated) number density profile. The amplitudes of the dominant
modes is roughly two orders of magnitude smaller than those of Figure 10. Further, the Fourier
spectrum is, as in the one-dimensional case, dominated by a few long-wavelength modes.

We now compare the energy conservation properties associated with the optimized loading
algorithm. The marker weights are advanced in phase space using the δf algorithm along their
respective trajectories (the derivation of the basic equations can be found elsewhere [8] and are
not repeated here). As shown in the Appendix, the gyrokinetic system should conserve the total
energy defined as

Etot

n0Te
=

K(t)

n0Te
+

U(t)

n0Te
,

where

U(t)

n0Te

=
1

2

∫
|∇⊥Φ|2 d3x (15)

is the potential energy and

K(t)

n0Te
=

∫ ∫
F

v2

2
d3xd3v , (16)

is the kinetic energy. The right-hand sides of Eqs.(15,16) are in gyrokinetic units. In order to
measure the nonconservation of total energy, the quantity

∆E(t) ≡ |Etot(t) −Etot(0)|
n0TeLxLy

, (17)

has been monitored throughout the simulation. Figure 13 shows that the nonconversation of
energy becomes substantial for t ≥ 4000. However, ∆E increases much faster when a random



loading (plain line) is used as compared to the case of an optimized loading (dotted line).
Furthermore, as the end of the simulation ∆E is roughly of an order of magnitude larger for the
random loading case than when compared to the optimized loading case. This difference in the
energy conservation properties can be traced to the ‘random kicks’ experienced by the markers at
t = 0. Each marker has a ‘memory’ of its trajectory through phase space; the cumulative effect
of an inaccurate initial loading translates into poor energy conservation in the late nonlinear
stage of the simulation.

4 Conclusions

The problem of marker loading in particle-in-cell gyrokinetic simulations has been addressed
using a quadratic optimization algorithm. It has been shown that optimized loading in con-
figuration space dramatically reduces the short wavelength modes of the electrostatic potential
which are partly responsible for the nonconservation of total energy. As the same time, the
long wavelength modes in the ion guiding center density (that tend to be amplified in the elec-
trostatic potential) are resolved with accuracy. It is this combination of factors (damping of
short-wavelength modes and better resolution of long-wavelength modes) which results in better
overall energy conservation. The method presented in this paper can be easily extended to arbi-
trary toroidal plasmas. Although the computing power of massively-parallel supercomputers has
increased considerably over the past decade, full-torus, gyrokinetic PIC simulations of micro-
turbulence in tokamak plasmas typically operate with 5 to 15 markers per cell; we believe that
the energy conservation properties of such simulated plasmas can be improved using optimized
loading in configuration space and velocity space.
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Appendix: Energy conservation in electrostatic gyroki-

netic simulations

The guiding center distribution for particle species j in the electrostatic, collisionless limit is
governed by

∂Fj

∂t
+ ∇·

(
Fj

dR

dt

)
+

∂

∂v||

(
Fj

dv||
dt

)
= 0 , (18)

where the equations of motions are

dR

dt
= v||b̂? +

µ

ωcj

b̂×∇B + VE , (19)

and

dv||
dt

= −b̂?·
(

µ∇B +
qj

mj
∇Φ

)
, (20)

and VE = cb̂×∇Φ/B, b̂? ≡ b̂+ρ||b̂×κ, ρ|| = v||/ωcj is the parallel gyroradius and µ = v2
⊥/(2B)

is the magnetic moment. Let us operate with
∫

v2/2(•)d3xd3v on Eq.(18):

∂

∂t

∫
Fj

v2

2
d3xd3v︸ ︷︷ ︸

1

+

∫
∇·

(
v2

2
Fj

dR

dt

)
d3xd3v︸ ︷︷ ︸

2

+

∫
v2

2

∂

∂v||

(
Fj

dv||
dt

)
d3xd3v︸ ︷︷ ︸

3

= 0 . (21)

Term 2 in the above equation vanishes whereas term 3 can be integrated by parts; as a result
we obtain

∂

∂t

∫
Fj

v2

2
d3xd3v =

∫
Fjv||

dv||
dt

d3xd3v . (22)

Eq.(19) can be written as

v||b̂? =
dR

dt
− µ

ωcj
b̂×∇B − VE . (23)

Multiplying Eq.(20) by v|| and using Eq.(23), one gets

v||
dv||
dt

=
µ2

ωcj

(
b̂×∇B

)
·∇B︸ ︷︷ ︸

1

+µ
qj

mjωcj

(
b̂×∇B

)
·∇Φ︸ ︷︷ ︸

2

+ µVE·∇B︸ ︷︷ ︸
3

+
qj

mj
VE·∇Φ︸ ︷︷ ︸

4

−µ∇B·dR
dt︸ ︷︷ ︸

5

− qj

mj
∇Φ·dR

dt︸ ︷︷ ︸
6

(24)

where terms 1 and 4, as well as the sum of terms 2 and 3, vanish. Eq.(24) then simplifies to

v||
dv||
dt

= −dR

dt
·
(

µ∇B +
qj

mj
∇Φ

)
. (25)



Using the relation of∫
∇·

(
Fj

dR

dt
Φ

)
d3x =

∫
Fj

dR

dt
·∇Φd3x +

∫
Φ∇·

(
Fj

dR

dt

)
d3x = 0 ,

it follows that ∫ ∫
Fj

dR

dt
·∇Φd3xd3v = −

∫ ∫
Φ∇·

(
Fj

dR

dt

)
d3xd3v . (26)

Using the expression for the volume element in velocity space, d3v = Bdµdv||, we note that∫ ∫
µFj∇B·dR

dt
d3xd3v =

∫ ∫
µFj∇

(
B2

2

)
·dR
dt

dµdv||d3x

=

∫ ∫
µ∇·

(
Fj

B2

2

dR

dt

)
dµdv||d3x

−
∫ ∫

µB2

2
∇·

(
Fj

dR

dt

)
dµdv||d3x

= −
∫ ∫

µB

2
∇·

(
Fj

dR

dt

)
d3xd3v . (27)

Using Eqs.(26,27) in Eq.(22), one gets

∂

∂t
=

∫ ∫
Fj

v2

2
d3xd3v =

∫ ∫ (
qjΦ

mj
+

µB

2

)
∇·

(
Fj

dR

dt

)
d3xd3v . (28)

Using the relation of

∇·
(

Fj
dR

dt

)
= −∂Fj

∂t
− ∂

∂v||

(
Fj

dv||
dt

)
in Eq.(28) we obtain

∂

∂t

∫ ∫
Fj

v2

2
d3xd3v = − qj

mj

∫
Φ

∂nj

∂t
d3x (29)

where nj =
∫

Fjd
3v is the number density for particle species j. To proceed further, we use the

gyrokinetic Poisson equation (in the long wavelength limit)

n0ρ
2
s

e

Te

∇2
⊥Φ = ne − ni . (30)

Upon multiplication of Eq.(29) by mj and summation over species, and taking into account
Eq.(30), one obtains

∂

∂t

∑
j

mj

∫ ∫
Fj

v2

2
d3xd3v = e2

∫
n0

ρ2
s

Te
Φ∇2

⊥
∂Φ

∂t
d3x . (31)

Using the relation of

Φ
∂

∂t
∇2

⊥Φ = ∇⊥·
(

Φ
∂

∂t
∇⊥Φ

)
− 1

2

∂

∂t
|∇⊥Φ|2 ,

and neglecting the (slow) variation of n0ρ
2
s/Te in Eq.(31) we obtain an equation describing the

conservation of energy∑
j

∫ ∫
Fj

mjv
2

2
d3xd3v +

1

8π

ρ2
s

λD
2

∫
|∇⊥Φ|2 d3x = E0 = const , (32)

where λD =
√

Te/(4πe2n0) is the Debye length.
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Figure 1 One-dimensional, linear interpolation for the computation of the local number density.
The vertical arrow shows the position of the kth marker (see main text for definition of ξk).

Figure 2 Histogram of the discrete number density for the initial loading (plain line) and for
the optimized loading at t = 200; the parameters of the simulations are: Ng = 64 (number
of nodes), ∆t = 0.1 (time step of integration) and Nc = 50 (number of markers per cell).

Figure 3 Same as Figure 2 but at t = 500.

Figure 4 Same as Figure 2 but at t = 2000 (saturation).

Figure 5 Time evolution of the energy-like quantity E for the case of Nc = 10 markers per cell.
Other parameters are: Ng = 64 (number of nodes) and ∆t = 0.1.

Figure 6 Time evolution of the energy-like quantity E for the case of Nc = 50 markers per cell.
Other parameters are the same as in Figure 5.

Figure 7 Computation of the number density of ion guiding centers. The position of a guiding
center is shown by a square with coordinates (X, Y ). A set of Ng = 8 of so-called gyropoints
is also shown (triangles). The computational nodes (or grid points) are represented by filled
circles.

Figure 8 Two-dimensional linear interpolation scheme.

Figure 9 Profile of the energy-like quantity E as a function of time. The simulation parameters
are: Nx = Ny = 64, Nc = N/(NxNy) = 10, Ng = 4, Lx = Ly = 8 and ∆t = 1.0. The initial
marker positions are purely random at t = 0.

Figure 10 Initial number density in the domain Ω = {x ∈ [0, Lx], y ∈ [0, Ly]}.
Figure 11 Same as Figure 10 at t = 100.

Figure 12 Same as Figure 10 at saturation (t = 4000).

Figure 13 Variation of the total energy for a two-dimensional gyrokinetic PIC simulations for
a random initial loading (plain line) and an optimized loading (dotted line)
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