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Abstract

A computational study of resistive drift waves in the edge plasma of a bumpy torus is
presented. The magnetohydrodynamic equilibrium is obtained from a three-dimensional
local equilibrium model. The use of a local magnetohydrodynamic equilibrium model
allows for a computationally-efficient systematic study of the impact of the magnetic field
structure on drift wave stability.

Pacs # : 52.35Kt, 52.30Jb, 52.35Ra

1 Introduction

There is growing evidence that slow, drift-type modes, known as drift waves, are responsible for
a substantial part of the observed anomalous transport in tokamak and stellarator plasmas [1].
Drift waves represent a special class of gradient instabilities which are driven unstable by a
source of free energy in the density and/or temperature gradients. In order to determine the
linear properties of drift waves (and other drift-type modes satisfying k||/k⊥ � 1, where k||
and k⊥ are the parallel and perpendicular wavevectors, respectively) in toroidal geometry, the
model equations can be solved using the ballooning representation of Connor et al [2] as an
eigenvalue [8] or as initial-value problem [7] for a set of representative field lines. Although some

∗e-mail: jlewando@pppl.gov
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understanding of the drift wave dynamics can be gained using the so-called iδ model (for which
the parameter δ is used as a tuning parameter for the drive of the instability), more realistic
models usually require the solution of two or more coupled partial differential equations to be
solved on a given field line. A natural approach for solving such systems of equations is to use an
initial-value algorithm; this method also ensures that the fastest growing mode is (numerically)
observed.

Although the topic of drift wave stability and dynamics in tokamak plasmas has been theo-
retically and numerically studied quite extensively, the study of low-frequency drift-type modes
in stellarator geometry has received much less attention. One major reason for this state of
affairs is that stellarator plasmas are inherently three-dimensional and usually require the use
of sophisticated equilibrium codes to specify their magnetohydrodynamic (MHD) equilibria. As
mentioned above, the most stringent linear stability considerations are usually based on the
eikonal representation for perturbations; the problem is then reduced to an initial-value (or
eigenvalue) problem along the magnetic field line; in general, the linear stability properties are
studied one magnetic surface at a time. This observation is one motivation behind the three-
dimensional local magnetohydrodynamic of Hegna [3]. Hegna’s equilibrium model is particularly
efficient for drift wave calculations as the MHD equilibrium is determined one surface at a time;
this low-cost method allows us to study the effect of magnetic surface shaping (or parameteri-
zation) on drift wave stability. Although the initial parameterization of the magnetic surface in
the local MHD equilibrium model can be quite general [see Eq.(5)], the main focus of this paper
is a stellarator with an helical magnetic axis.

This paper is organized as follows; in section 2, the simplest self-consistent model equations
governing resistive drift wave in a collisional plasma are presented. The characterization of the
local MHD equilibrium is given in section 3. Section 4 describes the numerical method used to
solve the equations governing the two-field resistive model. Numerical results are presented in
section 5, and conclusions are given in section 6

2 Resistive Drift Wave Model

We consider drift waves in a low-temperature, high-density edge plasma. In a typical edge
plasma, the electron-ion collision frequency can be high enough to prevent the electrons from
responding instantaneously to the perturbed electrostatic potential; as a result, the nonadia-
batic electron response does not vanish and the background density gradient feeds the unstable
drift mode. The most unstable modes are strongly elongated along the direction of the equilib-
rium magnetic field

(
k||/k⊥ � 1

)
and it is convenient to use the eikonal representation for each

fluctuating quantity f̃

f̃ = f̂ exp
(
iε−1S

)
,

where α = θ − ιζ is the field line label, θ is the magnetic poloidal angle, ζ is the magnetic
toroidal angle, ι is the rotational transform, S is the eikonal and ε is a smallness parameter.
Here f̂(ψ, α, θ) is the (slowly-varying) envelope (or amplitude) and ∇S ∼ ∇f̂ = O(1). As drift
waves are characterized by short perpendicular wavelength and long parallel wavelength, one can
demand that the eikonal S satisfies the relation of B·∇S = 0 which implies that S = S(α, ψ).

Noting that ∂f̂/∂ψ � ε−1∂S/∂ψ and that ∂f̂/∂α� ε−1∂S/∂α, these quantities can be neglected
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to this order. We can then write

f̃ = f̂ (θ) exp
[
iε−1S(ψ, α)

]
, (1)

By analogy with the Fourier representation, the perpendiculat wave number can be defined as

k⊥ ≡ −if̃−1∇⊥f̃ = ε−1∇⊥S = ε−1∂S

∂α

(
∇α+

∂S/∂ψ

∂S/∂α
∇ψ

)
= ε−1∂S

∂α

[
∇θ − ι∇ζ −

(
ζ
dι

dψ
− ∂S/∂ψ

∂S/∂α

)
∇ψ

]
.

Our model equations [See Eqs.(2,3)] are to be solved along a given field line labeled by α on a
flux surface ψ. This field line passes through the point (θ0, ζ0). The equilibrium is periodic and
therefore invariant under the operations

α(ψ, θ0, ζ0) 7→ α(ψ, θ0 + 2π, ζ0) and α(ψ, θ0, ζ0) 7→ α(ψ, θ0, ζ0 + 2π) .

The perpendicular wavevector, k⊥, defined above must fulfil the same periodicity constraints.
The periodicity constraints are satisfied if we require

∂S/∂ψ

∂S/∂α
= (ζ0 + ζk)

dι

dψ
,

where ζk is a free parameter for radially local studies. Using the field line equation, θ − ιζ =
θ0 − ιζ0, one can write the perpendicular wavevector as

k⊥ = ε−1∂S

∂α

[
∇θ − ι∇ζ −

(
θ − θ0

ι
− ζk

)
dι

dψ
∇ψ

]
.

In a low-β, cold-ion plasma , the model equations governing resistive drift wave (see Appendix
A for details) are: the quasineutrality equation

1

B
2

∂ω

∂t
= 2ξBLn∇||

(
Ln

B
∇||h̃

)
− 2Q· b̂×ρs0∇ñ

B
, (2)

and the electron continuity equation

∂ñ

∂t
= ∇ρ· b̂×ρs0∇Φ̃

B
− 2Q· b̂×ρs0∇h̃

B
+ 2ξBLn∇||

(
Ln

B
∇||h̃

)
, (3)

where ω = ρs0
2∇2

⊥Φ̃ and ξ ≡ ω?τe (mi/me) � 1 is termed the collisional parameter; ω? =√
Te/mi/Ln is the drift frequency, Ln is the density scalelength, Q ≡ Ln∇B/B is related to

the curvature of the magnetic field and ρs0 =
√
Te/mi/ (eB0/mic); B ≡ B/B0 where B0 is a

magnetic field of reference (see next section); finally h̃ = ñ − Φ̃ is the nonadiabatic response of
the electrons. The normalized time is t = ω?t where ω? is the drift frequency. Here ρ = ρ (ψ) is a
radial coordinate satisfying B·∇ρ = 0 which is defined in the next section. The terms involving
Q in Eqs.(2,3) arise because the divergence of the E×B drift velocity and the divergence of
the electron diamagnetic flux do not vanish in a sheared B field. The first term on the right-
hand side of Eq.(3) is the free energy, contained in the background density gradient, that drives
the drift wave. As it is evident in Eqs.(2,3), the key parameter is the collisional parameter, ξ,
which is inversely proportional to the collision frequency: in presence of collisions, the electrons
cannot achieve perfect adiabicity along the field lines and the drift mode can become unstable.
In practice, Eqs.(2,3) are solved as an initial-value problem for the amplitudes Φ̂ and n̂. The
MHD equilibrium quantities that enter Eqs.(2,3) are determined in the next section.
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3 Local magnetohydrodynamic equilibrium

The confining magnetic field is written in straight-field line coordinates

B = ∇ψ×∇α , (4)

where α ≡ θ − ιζ is the field line label, θ is the magnetic poloidal angle, ζ is the magnetic
toroidal angle, ι is the rotational transform, and ψ is related to the magnetic toroidal flux.
Without loss of generality, one can specify the shape of the magnetic surface in terms of the
cylindrical coordinates (R, φ, Z) as

R =

M∑
m=0

N∑
n=−N

Rmn cos (ϕmn) ,

φ = −ζ +
M∑
m=0

N∑
n=−N

φmn sin (ϕmn) , (5)

Z =
M∑
m=0

N∑
n=−N

Zmn sin (ϕmn) ,

where ϕmn ≡ mθ+nNpζ, Np is the number of field periods, and the poloidal and toroidal Fourier
mode numbers M and N , as well as the amplitudes {Rmn, φmn, Zmn}, are free parameters.
Using the parameterization (5) one can determine the covariant basis vectors eθ = ∂r/∂θ and
eζ = ∂r/∂ζ, where r is the position vector, and the metric elements gθθ = eθ·eθ, gθζ = eθ·eζ
and gζζ = eζ·eζ . It is convenient to define an orthonormal vector set

{
b̂, n̂, ĝ

}
attached to the

magnetic field lines

b̂ ≡ B

B
=

eη
|eη| (parallel)

n̂ ≡ eθ×eζ
|eθ×eζ| (normal) (6)

ĝ ≡ b̂×n̂ (geodesic)

where eη ≡ eζ + ιeθ. The vector set
{
b̂, n̂, ĝ

}
can be determined from the parameterization

(5). Finally, one can calculate important geometrical attributes of the confining B field such

as the geodesic curvature, κg = ĝ·[(b̂·∇)b̂], the normal curvature, κn = n̂·[(b̂·∇)b̂], and the

normal torsion τn = −n̂·[(b̂·∇)ĝ]. In order to determine the Jacobian of the transformation,
J = [∇ψ· (∇θ×∇ζ)]−1 = eψ· (eθ×eζ), we demand that the normal current vanishes everywhere
on the magnetic surface [3]; using Ampere’s law, one then has Jn ≡ n̂·J ∝ ∇ψ· (∇×B) ≡ 0, or

∂

∂θ

(
F (θ, ζ)

J

)
=

∂

∂ζ

(
G (θ, ζ)

J

)
, (7)

where

F (θ, ζ) = gζζ + ιgθζ ,

G (θ, ζ) = gθζ + ιgθθ . (8)
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Eq.(7) introduces the primary constraint on the choice r = r(θ, ζ) [Eq.(5)]. Eq.(7) is termed the
Jacobian constraint. Note that in the axisymmetric case, the Jacobian constraint admits the
exact solution of

J = f (ψ)F (θ, ζ) , (9)

where f(ψ) is an arbitrary flux surface quantity. In the general case, Eq.(7) must be solved
numerically. Assuming that a solution has been found, one can construct ∇ψ = (eθ×eζ) /J and
B = eη/J. The next step consists in calcultating the parallel current density consistent with the
radial force balance equation and the quasineutrality condition. Using the radial force balance
equation

J×B = c∇p ,

in the quasineutrality condition, ∇·J = 0, one obtains

∇·J|| = −∇·J⊥ = 2c
dp

dψ

|∇ψ|
B

κg , (10)

where the Jacobian constraint, Eq.(7), has been used. Substituting σ ≡ J·B/B2 = 〈σ〉 + σ̂ in
Eq.(10), one arrives at the equation of

B·∇λ = 2
|∇ψ|
B

κg . (11)

where λ ≡ σ̂/ (cp′) (a prime denotes a derivative with respect to the toroidal flux function) and
the quantity |∇ψ|/B can be calculated directly from the parameterization (5)

|∇ψ|
B

=

√
gθθgζζ − gθζ2

gζζ + 2ιgθζ + ι2gθθ
. (12)

The flux surface quantity 〈σ〉 is yet to be determined. The flux surface average of any function
F is defined as

〈F 〉 ≡
∫ 2π

0
dζ
∫ 2π

0
dθJF∫ 2π

0
dζ
∫ 2π

0
dθJ

=
1

V ′

∫ 2π

0

dζ

∫ 2π

0

dθJF , (13)

where V is the plasma volume enclosed within ψ. Note that if J is a solution of Eq.(7), then
f(ψ)J is also a solution of the same equation. Since the arbitrary flux surface function f(ψ) is not
known, the quantity V ′ is left undetermined; in practice, V ′ is used as an overall normalization
factor. The flux surface quantity 〈σ〉 can be obtained through the local magnetic shear defined
as S ≡ ĝ·∇×ĝ, which can also be written as (Appendix B)

S =
|∇ψ|2
B2

B·∇
(
D + ζ

dι

dψ

)
, (14)

where

D ≡ ι∇ζ·∇ψ − ∇θ·∇ψ

∇ψ·∇ψ
. (15)
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Using B·∇ζ = 1/J and noting that the flux surface average operator, 〈•〉, annihilates the B·∇
operator, we get from Eq.(14) 〈

SB2

|∇ψ|2
〉

= 4π2 ι
′

V ′ . (16)

Substituting S = 4πJ||/(cB)− 2τn in the left-hand side of Eq.(16) and noting that 〈σ̂〉 ≡ 0, one
obtains

〈σ〉 = cσ0 − cσ1
dp

dψ
− cσ2

dι

dψ
, (17)

where σ0 = C3/ (2πC1), σ1 = C2/C1 and σ2 = π/C1; we have defined

C1 =

∫ 2π

0

dζ

∫ 2π

0

B2J

gψψ
dθ ,

C2 =

∫ 2π

0

dζ

∫ 2π

0

B2Jλ

gψψ
dθ ,

and

C3 =

∫ 2π

0

dζ

∫ 2π

0

B2Jτn
gψψ

dθ .

In summary, given the parameterization (5), one solves Eq.(7) for the Jacobian, followed by
Eq.(11) for λ (which is proportional to the part of J||/B that varies in the magnetic surface).
Given ι′ and p′ (free parameters) one calculates 〈σ〉 through Eq.(17) and the specification of the
local MHD equilibrum is complete.

4 Numerical Method

In this section, the numerical method used to solve the two-field resistive drift wave model is
presented. The motivation for using a semi-implicit algorithm is discussed.

The radial coordinate is conveniently defined as ρ ≡ R0

√
2ψ where ψ ≡ ψ/ψ0 and ψ0 =

B0R0
2 and R0 ≡ R00 is the major radius [in the large-aspect ratio tokamak equilibrium, ψ '

B0r
2/2 where B0 is the magnetic field strength evaluated at the magnetic axis; it follows that

ρ = r in this case]. In the general 3D case, it is convenient to define a magnetic field strength

of reference as B0 ≡ 〈B2〉1/2. Using the eikonal representation [Eq.(1)] in the quasineutrality
condition [Eq.(2)] and the electron continuity equation [Eq.(3)] we obtain

∂Φ̂

∂t
= −ηD|| − iην⊥n̂ , (18)

and

∂n̂

∂t
= −i

√
bΦ̂ +D|| + iν⊥

(
n̂ − Φ̂

)
, (19)
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where

D|| = ν||BS||
∂

∂θ

S||
B

∂
(
n̂− Φ̂

)
∂θ

 . (20)

Here S||(θ) = 1/
(
JB
)
, J =

[
R0∇ψ· (R0∇θ×R0∇ζ)

]−1
is the dimensionless Jacobian and ν|| =

2ξε2n/q
2 is related to the parallel transport of current density. The perpendicular transport is

controlled by the curvature term

ν⊥
(
θ
) ≡ 2

√
b ε εnS⊥

(
θ
)
, (21)

which arises from the divergence of the electron diamagnetic flux and the divergence of the
E×B drift velocity. In the above equations, we have defined b ≡ (kθρs0)

2, kθ ≡ N0/a is the
characteristic perpendicular wavevector (i.e. |∇α|2θ=0 ∼ k2

θ), εn ≡ Ln/R0 and ε ≡ a/R0 is the
inverse aspect ratio. The geometrical quantities L and S⊥ are defined as

L (θ) ≡ 1 + Λ2

R2
0g
ψψ

, (22)

S⊥
(
θ
) ≡ κn + Λκg√

gψψ
, (23)

and

Λ
(
θ
) ≡ −∇ψ·∇α

B
. (24)

Finally η
(
θ
) ≡ 1/ (bε2L) ' 1/θ

2
for large

∣∣θ∣∣. In view of the secular behavior of the polarization

term (L ∼ θ
2

for
∣∣θ∣∣ � 1), it is numerically convenient to solve for the nonadiabatic response

ĥ ≡ n̂ − Φ̂ instead of solving the quasineutrality equation (18). The system of equations to be
solved can then be written as

∂n̂

∂t
= −i

√
bΦ̂ +D|| + iν⊥ĥ , (25)

and

∂ĥ

∂t
= −i

(√
b+ ν⊥

)
Φ̂ + (1 + η)D|| + i (1 + η) ν⊥n̂ . (26)

Eqs.(25,26) are discretized on the domain θ ∈ [−θmax,+θmax

]
where θmax is a free parameter.

In a low-temperature, high-density edge plasma the collisional parameter is much larger than
unity [typically ξ = O (102

)
] and one expects the parallel transport to be strong. Therefore a

numerical method based on an explicit scheme will require a very small time step. The time
step for an explicit method is constrained by the transport along the magnetic field lines and
must be less than the well-known Courant-Friedrichs-Lewy (CFL) criterion [4] of

∆t < (∆t)CFL ≡ q2
(
∆θ
)2

2ξεn2
, (27)
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where ∆θ is the grid spacing. In practise, the grid spacing ∆θ must be chosen small enough
as to capture the details of the equilibrium along the magnetic field line. In order to bypass
the stringent condition (27) we must resort to an implicit scheme. As it turns out, for the
system of Eqs.(25,26), it is sufficient to use a semi-implicit numerical scheme; this is done by

treating ∂n̂/∂t and ∂ĥ/∂t and the parallel transport terms [terms in D|| in Eq.(25,26)] implicitly
whereas the remaining terms are treated explicitly. As a result one obtains a set of coupled
tridiagonal systems which can be solved sequentially using standard algorithms, such as the
Thomas algorithm [6].

In order to determine the mode frequency, ω, we use the transformation of

Φ̂
(
θ, t
) 7→ Φ

(
θ
)
exp (−iωt) .

The normal mode frequency can be written as ω = < (ω) + i= (ω) ≡ ωr + iγ. Noting that

∂Φ̂

∂t
=

1

2

1∣∣∣Φ̂∣∣∣ ∂

∂t

∣∣∣Φ̂∣∣∣2 − iωr

∣∣∣Φ̂∣∣∣ ,
we obtain

γ =
1∣∣∣〈Φ̂〉

θ

∣∣∣ ∂

∂t

∣∣∣〈Φ̂
〉
θ

∣∣∣ , (28)

for the linear growth rate and

ωr = −=
 1〈

Φ̂
〉
θ

∂

∂t

〈
Φ̂
〉
θ

 , (29)

for the mode frequency. Equation (28) is also denoted γΦ below. The linear growth rate associ-
ated with the perturbed plasma density is given

γn =
1

|〈n̂〉θ|
∂

∂t
|〈n̂〉θ| . (30)

In the above equations, we have defined the field-line average operator as

〈F 〉θ ≡
1

2θmax

∫ +θmax

−θmax

F
(
θ
′
, t
)
dθ

′
, (31)

for any function F
(
θ, t
)
. The free parameter in Eq.(31) must be large enough so that the

linear growth rate [Eq.(28)] and the mode frequency [Eq.(29)] become independent of θmax; a
convergence study using this parameter is presented in the next section.

5 Numerical Results

As described in section 3, the specification of the local MHD equilibrium depends on 2 free
parameters, ι′ and p′. It is convenient to use normalized quantities instead of ι′ and p′; to make
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the connection with the standard large-aspect ratio tokamak notation, we define the ballooning
parameter

αb ≡ − 2

π2ι2
V ′〈

B2

gψψ

〉1/2

dp

dψ
, (32)

and the global shear parameter

sb ≡ −4π2R0

V ′

1
ι

dι
dψ〈
B2

gψψ

〉 . (33)

As mentioned in the Introduction, the initial parameterization of the magnetic surface [Eq.(5)] is
quite general. However, in order to illustrate the usefulness and efficiency of the local equilibrium
model for drift wave stability calculations, we consider the parameterization of

R = R0 [1 + εt cos θ + εh cos (Nζ)] ,

φ = −ζ , (34)

Z = R0 [εt sin θ + εh cos (Nζ)] ,

where N ≡ Np is the number of field periods; εt and εh are termed the toroidicity parameter
and the helical parameter, respectively. In the remaining of this paper, we refer to Eq.(34) as
the helical parameterization. Note that the case εh = 0 in Eq.(34) corresponds to the tokamak
parameterization with concentric, circular magnetic surfaces (which is valid for a low-β plasma).

In all simulations reported in this paper, the initial profile for Φ̂ has been chosen to be a
Gaussian profile with its maxima centered at θ = 0. The density profile at t = 0 is chosen as
n̂ = Φ̂, that is the nonadiabatic response vanishes at t = 0; as a result, the parallel transport
terms in Eqs.(25,26), which involve D||, vanish at the beginning of the simulations. Since the

cross-field terms in Eqs.(25,26) are not equal (even when n̂ = Φ̂), the non-adiabatic response
becomes nonzero as time progresses. As the instability develops, the parallel transport increases
in order to balance the cross-field transport; at this stage, the linear growth rate becomes almost
independent of time (Figure 4). In these studies, the linear growth rates associated with the
perturbed electrostatic potential and plasma density have been maximized with respect to the
parameter ζk. For the specific cases, it has been found that the fastest linear growth rate, γ`, is
the largest at ζk = 0 and that γ` decreases weakly with increasing ζk. The numerical study has
been carried for the field line that passes through the outboard side of the torus (ζ0 = θ0 = 0);
this choice has been motivated by the fact that the normal curvature is strongly unfavorable
there. The numerical study can of course be repeated for various field lines.

The real (plain) and imaginary (dotted) parts of the normalized electrostatic potential am-
plitude at ω?t = 10 is shown in Figure 2. The parameters are: αb = 0 (ballooning parameter),
sb = 0.25 (global shear parameter), q = 2.28 (safety factor), n0 = 5 × 1012 cm−3 (equilibrium
plasma density), Te = 5 eV (equilibrium electron temperature), kθρs0 = 0.8, B0 = 104 Gauss
(equilibrium magnetic field of reference), ∆θ = π/128 (grid spacing), Ln = 4.0 cm (density
scalelength), R0 = 102cm (major radius), εt = 0.2 (toroidicity parameter) and εh = 0.1 (helical
parameter). The number of field periods is N = 3. Figure 3 shows the corresponding profile for
the perturbed density amplitude. We note that the fluctuating electrostatic potential and the
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plasma density are out of phase and that their respective amplitudes are not equal indicating
that the drift mode is unstable. The collision parameter for Figures 2 and 3 is ξ = 71.6.

Figure 4 shows the instantaneous linear growth rate as a function of the normalized time
t = ω?t for the electrostatic potential (plain line) and the perturbed plasma density (dotted
line). The parameters are the same as those of Figures 2 and 3. After transitory effects, the
growth rates reach a common asymptotic value after a few growth times; a growth time is
defined as the reciprocal of the average linear growth rate, τ ≡ 1/γ`, where γ` = 1

2
(γΦ + γn).

The instantaneous mode frequency as a function of the normalized time for the electrostatic
potential (plain line) and the perturbed plasma density (dotted line) is shown in Figure 5.

As discussed in the previous section, the field-line averaged profiles
〈
Φ̂
〉
θ

and 〈n̂〉θ depend

implictly on the parameter θmax. Therefore one must ensure that the parameter θmax is large
enough so that the linear growth rate and the mode frequency become independent of its value.
Figure 6 shows the average linear growth rate, γ`, as a function of the parameter θmax. The
parameters used in the simulations are: αb = 0, sb = 0.25, q = 2.28, n0 = 5 × 1012 cm−3,
Te = 5 eV, kθρs0 = 0.8, B0 = 104 Gauss, ∆θ = π/128, Ln = 4.0cm, R0 = 102cm, εt = 0.2,
εh = 0.05. For θmax > 5, the linear growth rate reaches its asymptotic value. Note that in
practice the parameter θmax must be increased as the global shear parameter, sb, is decreased
(the extent of the mode along the field line increases with decreasing global shear).

Figure 7 shows the average linear growth rate as a function of the helical parameter, εh.
The toroidicity parameter is kept constant at εt = 0.2. Other parameters are the same as in
Figure 6. As mentioned in the beginning of this section, the case εh = 0 corresponds to the
tokamak parameterization (with circular magnetic surfaces). The linear growth rate increases
until εh ∼ εt. Note that each square corresponds to a different magnetic configuration; it takes
about 55 seconds on a workstation to compute the MHD equilibrium and the linear growth rate.
If one uses a global equilibroum code, one would have to recalculate the MHD equilibrium for
the entire plasma volume for each data point in Figure 7: the use of the local equilibrium model
represents an enormous reduction in the overall computational effort.

In order to understand the dependence of the linear growth rate on the helical parameter,
one can compare the key attributes of the magnetic configuration for specific sets (εt, εh); such
key attributes are the normal and geodesic components of the magnetic curvature (κn and κg,
respectively), the magnetic shear, S, and the normal torsion, τn. Other quantities that charac-
terize the equilibrium configuration do enter the drift wave stability calculations; however, the
impact of these quantities are subdominant. The normal magnetic curvature and the magnetic
shear are probably the most important quantities that affect drift wave (and ballooning) stabil-
ity [5]. Figure 8 shows the normal curvature (plain line) and the local magnetic shear (dotted
line) along the field line for the case of (εt, εh) = (0.2, 0.05). The ballooning parameter is αb = 0
and the global shear parameter is sb = 0.25. For these parameters, the modes are nonzero in
the range

∣∣θ∣∣ . 5 (See Figures 2 and 3). Figure 8 shows that the normal curvature is destabi-

lizing (negative) in the outboard side of the torus. The magnetic shear is positive around θ = 0
but becomes negative further away along the field line. The normal curvature (plain line) and
the local magnetic shear (dotted line) along the field line for the case of (εt, εh) = (0.2, 0.2) is
shown in Figure 9. The normal curvature has a more destabilizing influence on the drift modes
as compared to Figure 8; this is one indication that the linear growth rate for the parameters
of Figure 9 should be larger than for the case of Figure 8. However, one must also consider
the impact of the local magnetic shear. Note that in the case of Figure 9 the bulk of the drift
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mode amplitude experiences a positive global shear away from the θ = 0; therefore, we expect
the linear growth rate to be larger for the case of Figure 9 as compared to the case of Figure
8. The detrimental influence of a large, positive local magnetic shear on drift wave stability in
realistic 3D stellararator geometries has been noted by Nadeem and co-workers [8]; these authors
also discuss the case of large, negative local magnetic shear which appears to have a stabilizing
influence on the drift mode. This is in agreement with our observations, although our model
equilibrium is far simpler than the fully 3D stellarator equilibrium used in the work of Nadeem
et al.

Since the collisional parameter scales linearly with the electron collision time, and noting
that τe ∝ T

3/2
e , we expect the linear growth rate to decrease sharply with increasing electron

temperature. As the electron temperature increases, the electron mean free path, λe, increases;
when λe & k||

−1, the electron response becomes adiabatic. Figure 10 shows the linear growth
rate normalized to the drift frequency, γ̃ ≡ γ/ω?. As expected, the linear growth rate decreases
with increasing electron temperature; however, since the drift frequency scales like

√
Te, it is

more meaningfull to normalize the linear growth rate as

γ

γ0
=

γ̃

γ̃0

√
Te0
Te

,

where γ0 denotes the linear growth rate evaluated at Te = Te0. Figure 11 shows a plot of γ/γ0

as a function of the electron temperature; the electron temperature of reference is Te0 = 5 eV.
The linear growth rate based on this simplified two-field model depends strongly on the electron
temperature.

The dependence of the normalized linear growth rate on the global shear parameter, sb, is
shown in Figure 12. The toroidicity and helical parameters are εt = 0.2 and εh = 0.1, respectively.
Figure 12 shows that there are two regimes: the low-shear regime, defined somewhat arbitrarily
as sb < 1, and the high-shear regime, sb > 1. The dependence of the linear growth rate is
approximately linear in these two regimes: γ/ω? = 0.18 − 0.048sb in the low-shear regime; and
γ/ω? = 0.14 − 0.015 (sb − 1) in the high-shear regime. The fact that the variation of the linear
growth with sb is steeper in the low-shear regime is that, for small sb, the global magnetic shear
(〈S〉) is comparable to, or smaller than, the magnitude of the shear that varies in the magnetic

surface, S̃ ≡ S − 〈S〉. In the high-shear regime, the contribution of S̃ becomes less important
and the dependence of γ depends mostly on the global shear 〈S〉.

6 Conclusions

Drift wave stability calculations in stellarator geometry usually requires the use of sophisticated,
computationally-intensive 3D MHD equilibrium codes. However, as far as linear stability is
concerned, the general approach is to study the local drift wave stability using the ballooning
representation, one magnetic surface at a time. Hegna’s local equilibrium model [3] is specific
to a particular magnetic surface and it is computationally very efficient.

The local equilibrium model has been used to study the drift wave stability properties of a
two-field resistive model valid in the low-temperature, high-density edge plasmas of tokamaks
and stellarators. It has been shown that in the case of a stellarator with a helical axis a large,
positive magnetic shear can increase the linear growth rate, whereas a large, negative magnetic
shear has a stabilizing influence on the drift modes.
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A Derivation of the Resistive Drift Wave Model

In the cold ion limit, the ion momentum equation reads

min

(
∂

∂t
+ Vi·∇

)
Vi = en

(
E +

Vi×B

c

)
− Rei , (35)

where Rei = en
(
J||/σ|| + J⊥/σ⊥

)−0.71n∇||Te− 3
2
nb̂×∇⊥Te/ (ωceτe) is the momentum transfer

due to collisions; σ|| ' 2σ⊥, σ⊥ = e2nτe/me are the parallel and perpendicular electron conduc-

tivities, respectively; τe = (3
√
meT

3/2
e )/(4

√
2πnλe4) is the electron collision time. The electron

momentum equation (for massless electrons) is

∇pe + en

(
E +

Ve×B

c

)
= Rei . (36)

Operating with B× on Eqs.(35,36) we obtain (in the low-frequency regime of ω/ωci � 1)

Vi⊥ = VE + Vpi + Vc , (37)

and

Ve⊥ = VE + V?e + Vc , (38)

respectively. Here

VE =
c

B2
B×∇Φ ,

Vpi = ω−1
ci b̂×

(
∂

∂t
+ VE ·∇

)
VE ,

Vc =
c

enB2
B×Rei , (39)

V?e = − c

enB2
B×∇pe ,

are the E×B drift velocity (in the low-β approximation of E ' −∇Φ), the ion polarization
drift velocity, the collisional drift velocity and the electron diamagnetic drift velocity, respec-
tively. For low-frequency, long-wavelength modes (k2

⊥λ
2
D � 1) (where k⊥ is the magnitude of

the perpendicular wavevector and λD is the Debye length), the plasma is quasineutral

∇·J = 0 ,

or

∇·J⊥ = −B·∇
(
J||
B

)
, (40)

where the perpendicular current density is obtained from Eqs.(37,38)

J⊥ = en (Vpi − V?e) , (41)
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and the parallel current density, J||, is determined from the scalar product of Eq.(36) with

b̂ ≡ B/B

J|| =
σ||
en

(∇||pe + 0.71n∇||Te − en∇||Φ
)
. (42)

Combining Eqs.(40-42) and linearizing, we obtain the quasineutrality equation (for Vi|| � Ve||)
as

n0c

Bωci

∂

∂t
∇2

⊥Φ = 2n0
∇B

B
·V?e + B·∇

[
σ||
en0B

(∇||pe + 0.71n∇||Te − en∇||Φ
)]

, (43)

where we made use of the (low-β) relation of

∇·B×∇f

B2
' −2

∇B

B
·B×∇f

B2
, (44)

for any fluctuating quantity f . Using the definitions (39) in the electron continuity equation

∂n

∂t
= −∇· (nVE) − ∇· (nV?e) −∇· (nVc) , (45)

and noting that Vc ∼ VE/ (ωceτe) � VE ∼ V?e, one gets

∂n

∂t
=

(
2
∇B

B
+

∇ρ

Ln

)
· (n0VE) + 2

∇B

B
· (n0VE) +

1

e
B·∇

(
J||
B

)
. (46)

Here ρ = ρ(ψ) is a radial coordinate (B·∇ρ = 0). In drift wave units [t = ω?t, ω? = cs/Ln is the

drift frequency, cs =
√
Te/mi is the sound speed, (ñ , Φ̃) = (δn/n0, eΦ/Te)], Eqs.(43,46) become

(neglecting electron temperature fluctuations)

1

B
2

∂ω

∂t
= 2ξBLn∇||

(
Ln

B
∇||h̃

)
− 2Q· b̂×ρs0∇ñ

B
(47)

and

∂ñ

∂t
= (2Q + ∇ρ) · b̂×ρs0∇Φ̃

B
− 2Q· b̂×ρs0∇ñ

B
+ 2ξBLn∇||

(
Ln

B
∇||h̃

)
(48)

where ω ≡ ρs0
2∇2

⊥Φ̃ and ξ ≡ ω?τe (mi/me) � 1 is termed the collisional parameter; Q ≡
Ln∇B/B is related to the curvature of the magnetic field and ρs0 =

√
Te/mi/ (eB0/mic);

B ≡ B/B0 where B0 is a magnetic field of reference (see main text); finally h̃ = ñ − Φ̃ is
the nonadiabatic response of the electrons.
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B Remarks on the Local Magnetic Shear

Using the definitions of the unit parallel vector, b̂ = B/B, and the unit normal vector, n̂ =

∇ψ/
√
gψψ, we can write the binormal vector as

ĝ = f (B×∇ψ) , (49)

where f =
(
B
√
gψψ
)−1

. Using Eq.(49) in the definition of the local magnetic shear we obtain

S = ĝ·∇×ĝ = ĝ· [∇f× (B×∇ψ) + ∇× (B×∇ψ)] ,

= f(∇gψψ·∇α×ĝ︸ ︷︷ ︸
1

−∇gαψ ∇ψ×ĝ︸ ︷︷ ︸
2

) , (50)

where we have used the Clebsch for the magnetic field, B = ∇α×∇ψ. Terms 1 and 2 in Eq.(50)
can be written as

∇α×ĝ = g∇α× (B×∇ψ) = fgαψB , (51)

and

∇ψ×ĝ = f∇ψ× (B×∇ψ) =

√
gψψ

B
B , (52)

respectively. Combining Eqs.(50-52), one can write

S = f

(
fgαψB·∇gψψ −

√
gψψ

B
B·∇gαψ

)
,

= −|∇ψ|2
B2

B·∇
(
gαψ

gψψ

)
,

=
|∇ψ|2
B2

B·∇
(
D + ζ

dι

dψ

)
, (53)

where

D ≡ ι∇ζ·∇ψ − ∇θ·∇ψ

∇ψ
. (54)
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C Conventions

There is some freedom in defining key dimensionless parameters. To make connection with
previous work, we consider the expression for the local magnetic shear for a tokamak with
circular magnetic surfaces and make a one-to-one correspondance with the three-dimensional
local model. For a tokamak plasma with circular magnetic surfaces, the magnetic surfaces are
parameterized according to

R = R0 + r cos θ0 ,

φ = −ζ , (55)

Z = r sin θ0 .

In the large-aspect-ratio limit, the geometrical poloidal angle, θ0, is approximately equal to the
magnetic poloidal angle, θ. Using Eq.(55) we can easily calculate the metrics gθθ = r2, gζζ = R2

and gθζ = 0 (since the basis vectors eθ and eζ are orthogonal in this limit). The Jacobian
is given by J = CR2 where the constant C is determined from the normalization condition∫ 2π

0
dζ
∫ 2π

0
dθJ = V ′, which yields

J ' V ′

4π2R2
0

, (56)

where V ′ = dV/dψ. The toroidal flux function is given by ψ ' B0r
2/2 where B0 is the magnetic

field strength on the magnetic axis. Using the parameterization (55) we obtain

B2

gψψ
=
ι2gθθ + 2ιgθζ + gζζ

gθθgζζ − g2
θζ

=
R2 + ι2r2

r2R2
≈ 1

r2
. (57)

To calculate the local magnetic shear we must determine the expression for λ (which is related
to the parallel current flowing in the magnetic surface). Using B·∇λ = 2 |∇ψ|κg/B and noting
that the geodesic magnetic surface is κg ' sin θ/R0,

dλ

dθ
' qr

2π2R0
V ′ sin θ ,

which can be integrated to give

λ ' − qr

2π2R0
V ′ cos θ . (58)

To lowest order the flux surface averaged quantity 〈σ〉 is given by the global shear as

4π

c
〈σ〉
〈
B2

gψψ

〉
' 4π2

V ′
dι

dψ
. (59)

The plasma volume enclosed within r is V = 2π2r2R0. Using dι/dψ = −q−2dq/dr (dψ/dr)−1

and V ′ = dV/dψ = 4π2rR0 (dψ/dr)−1 we obtain from Eq.(59)

〈σ〉 ' − c

4π

1

qR0
ŝ , (60)
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where ŝ = r(dq/dr)/q is the usual (tokamak) definition of the global shear parameter. Using
the definition of σ̂ = cλdp/dψ and Eqs.(58,60) in the expression for the local magnetic shear, we
obtain

(−qR0)S ' ŝ+
2

π
rq2 dp

dψ
V ′ cos θ . (61)

Defining the ballooning parameter

αB ≡ − 2

π2ι2
V ′〈

B2

gψψ

〉1/2

dp

dψ
, (62)

and the global shear parameter

sB ≡ −4π2R0

V ′

1
ι

dι
dψ〈

B2

gψψ

〉 , (63)

one can write Eq.(61) in the form of (−qR0)S = sB − αB cos θ.
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Figure 1 Schematic representation of the cross section ζ = 0 (see main text for definition of
the average minor radius, a).

Figure 2 Real (plain line) and imaginary (dotted line) parts of the mode amplitude for the
normalized electrostatic potential at ω?t = 10.

Figure 3 Real (plain line) and imaginary (dotted line) parts of the mode amplitude for the
normalized perturbed plasma density at ω?t = 10.

Figure 4 Instantaneous linear growth rates for the electrostatic potential (plain line) and the
perturbed plasma density (dotted line) as a function of the normalized time ω?t.

Figure 5 Instantaneous mode frequency for the electrostatic potential (plain line) and the per-
turbed plasma density (dotted line) as a function of the normalized time ω?t.

Figure 6 Saturated linear growth rate as a function of the parameter θmax.

Figure 7 Saturated linear growth rate as a function of the helical parameter εh; the toroidicity
parameter is kept fixed at εt = 0.2.

Figure 8 Normal magnetic curvature (plain line) and local magnetic shear (dotted line) along
the magnetic field line for the parameters of (εt, εh) = (0.2, 0.05).

Figure 9 Normal magnetic curvature (plain line) and local magnetic shear (dotted line) along
the magnetic field line for the parameters of (εt, εh) = (0.2, 0.2).

Figure 10 Linear growth rate, normalized to the drift frequency, as a function of the electron
temperature.

Figure 11 Linear growth rate, normalized to its value at Te = 5eV , as a function of the electron
temperature.

Figure 12 Linear growth rate normalized to the drift frequency as a function of the global shear
parameter sb.
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FIG.2 Lewandowski
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FIG.3 Lewandowski
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FIG.4 Lewandowski
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FIG.5 Lewandowski
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FIG.6 Lewandowski
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FIG.7 Lewandowski
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FIG.8 Lewandowski
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FIG.9 Lewandowski
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